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Abstract-Displacement-distance analysis of fault-related fold structures can reveal important information about 
the distribution of fault displacement, and, in some cases, the history of fault propagation. This method is 
commonly used to: (1) determine the ratio of displacement rate to propagation rate (s/p ratio), (2) predict the 
location of unconstrained fault tips, (3) determine the location of fault nucleation points, and (4) evaluate 
structural interpretations. Although the displacement-distance approach represents a potentially useful method 
for gaining information about displacement-parallel fault propagation histories of natural fault-related fold 
structures, the theoretical relationship between s/p and relative stretch (sr) that forms the basis of this method 
remains essentially untested. Because displacement rates and propagation rates are generally unknown for natural 
structures, these relationships can only be objectively tested by analysing model structures with known geometries, 
strain distributions, and fault propagation histories. Displacement-distance analysis of different fault-related fold 
models reveals that: (1) displacement-distance relationships are highly dependent on the nature of the hanging 
wall strain, (2) relative stretch is not related to s/p in any general way, (3) fault tip locations cannot always be 
predicted by linear extrapolation of displacement-distance trajectories, (4) displacement maxima are not 
necessarily indicative of fault nucleation points in all cases, and (5) although calculation of s/p ratios from 
observed relative stretch magnitudes may not be appropriate, the use of displacement-distance relationships can 
nonetheless be useful in comparing structures and improving structural interpretations. 0 1997 Elsevier Science 
Ltd. All rights reserved. 

INTRODUCTION 

The question of how faults initiate and propagate is of 
fundamental importance to the evolution and interpreta- 
tion of fold-thrust structures. Because the processes of 
fault nucleation, propagation, and displacement cannot 
generally be observed directly in natural structures, 
various theoretical approaches have been used to evalu- 
ate and predict the relative importance and rates of these 

processes. Williams and Chapman (1983) introduced 
displacement-distance analysis as a method for charac- 
terizing the distribution of displacement and for inter- 
preting the propagation histories of natural faults. 
Displacement-distance analysis is commonly used to 
determine the ratio of fault slip (displacement) to 
propagation, or s/p ratio (Williams and Chapman, 1983; 
Chapman and Williams, 1984; Dominic and McConnell, 
1994), predict the location of unconstrained fault tips 
(Williams and Chapman, 1983; Chapman and Williams, 
1984), determine the location of fault nucleation points 
(Ellis and Dunlap, 1988; Kattenhorn and McConnell, 
1993), and evaluate structural interpretations (McCon- 
nell, 1994). 

Although the displacement-distance approach repre- 
sents a potentially useful method for gaining information 
about fault propagation histories of natural structures, 
the theoretical relationship between s/p and relative 
stretch (E,) that forms the basis of this method remains 
essentially untested. Because displacement and propaga- 
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tion histories are generally unknown for natural struc- 
tures, these relationships can only be objectively tested by 
analysing model structures with known geometries, 
strain distributions, and fault propagation histories. 
This paper presents results from displacement-distance 
analysis of several different fault-related fold models with 
known geometries, strain distributions, and fault propa- 
gation histories, and discusses the results of these 
analyses for the interpretation of propagation histories 
for natural faults based on displacement-distance rela- 
tionships. 

Displacement-distance relationships 

Williams and Chapman (1983) realized the interde- 
pendency of fault propagation, displacement, and inter- 
nal strain within a thrust sheet, and proposed a 
dislocation analogy for propagating faults where dis- 
placement decreases toward the fault tip in the direction 
of transport (Fig. la & b). The variation in displacement 
along the fault can be illustrated on a displacement- 
distance plot (Fig. Ic), where the cutoff separation 
(displacement) is plotted as a function of position 
measured along the fault relative to an arbitrary reference 
point (Williams and Chapman, 1983). 

In the Williams and Chapman (1983) dislocation 
model, hanging wall strain occurs by homogeneous pure 
shear with a greatest shortening axis parallel to a planar 
fault (fault-parallel pure shear; Fig. 1). Based on this 
model, Williams and Chapman (1983) derived a quanti- 
tative relationship between relative stretch (E,), and ratio 
of the slip to propagation (s/p) such that 
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Fig. 1. Williams and Chapman (1983) dislocation model used in the 
derivation of the relationship between E, and s/p ratio in equation (1). (a) 
Model before displacement. (b) Model with 40% hanging wall short- 
ening by fault-parallel pure shear and associated propagation of the 
planar fault. (c) Displacement-distance plot corresponding to (b). 
Vertical and horizontal scales are identical. Points A & B in (c) 
correspond to A & B in (b). Figure modified after Williams and 

Chapman (1983). 
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where s is the fault slip (displacement) and p is the 
propagated fault length. For contractional structures, the 
relative stretch measured parallel to the fault is given by 

lh 
ET=--, 

!f 
(2) 

where ljis the initial, or footwall cutoff length, and lh is 
the deformed, or hanging wall cutoff length. 

Fault-parallel pure shear of the type assumed in the 
Williams and Chapman (1983) model is widely recog- 
nized in foreland fold-thrust belts (i.e. layer-parallel 
shortening of Geiser and Engelder, 1983; Geiser, 1988) 
but it represents only one of the possible end-member 
types of strain in thrust sheets (Coward and Kim, 1981; 
Sanderson, 1982). Bedding-parallel simple shear (flexural 
flow or flexural slip) is also widely recognized in fold- 
thrust belts, and is interpreted to be an important 
mechanism in many structures characterized by parallel 
folding (Chapple and Spang, 1974, among others). 
Bedding-parallel simple shear will generally result in 
changes in bed-cutoff lengths (Suppe, 1983; DePaor, 
1987; Ferrill, 1988; Rowan and Ratliff, 1988) and 
associated transport-parallel displacement gradients 
along the fault. 

In addition to determining s/p ratios, displacement- 
distance methods have been used to estimate the 
positions of fault tips and nucleation points, and to 
improve structural interpretations. Williams and Chap- 
man (1983) and Chapman and Williams (1984) project 
displacement-distance trajectories towards the axis 
where displacement =0 to estimate the position of the 
fault tip. Assuming that displacement is time-dependent 
such that the oldest fault segments will have the greatest 
displacement, displacement maxima on a displacement- 
distance plot are often taken to represent the nucleation 
point of the fault (Ellis and Dunlap, 1988; Kattenhorn 
and McConnell, 1993). A more subjective use of 

displacement-distance diagrams involves the use of 
these plots in evaluating and improving structural 
interpretations (McConnell, 1994). 

Displacement-distance analysis of fault-related fold 
models 

It is generally not possible to evaluate the relationships 
between fault propagation, ductile strain, and displace- 
ment-distance relationships of natural structures because 
fault propagation histories for natural structures are 
generally not known, and because representative struc- 
tures with well-exposed cutoff geometries and known 
strain distributions are rare. For this reason, fault-related 
fold models with known fault propagation histories, 
cutoff geometries, and strain distributions are used in 
this study to evaluate the predictions of Williams and 
Chapman’s (1983) theoretical relationship between s/p 
and E,. Models analysed in this study include the fault- 

propagation fold models of Suppe and Medwedeff (1984, 
1990) Jamison (1987) Chester and Chester (1990) Mitra 
(1990), and Erslev (199 l), the paper card ramp-fold 
model of Elliott (1976) the fault-bend fold model of 
Suppe (1983) a fault-bend fold model with a curved 
ramp geometry and a generalized decollement fold 
model. All of the models are characterized by bedding- 
parallel simple shear deformation, and the decollement 
fold model also features heterogeneous ductile shear in 
the decollement zone. The geometries, kinematics, and 
strain distributions of these models are well constrained. 
In all cases, the models analysed in this study either 
originate with a pre-existing fault (i.e. s/p =O), or 
propagate from a known point and at a known rate. 

These models are certainly not representative of 
natural structures in all respects, but they do incorporate 
strain mechanisms (i.e. bedding-parallel simple shear) 
and geometries that are reasonable to the first approx- 
imation, and thus represent possible end-member pro- 
cesses in nature. Thus these models can be used to 
illustrate some of the important relationships between 
fault propagation, ductile strain, and displacement- 
distance relationships that may be analogous to natural 
structures. Furthermore, if the displacement&distance 
relationships outlined by Williams and Chapman (1983) 
are generally applicable to the heterogeneous and 
complex strain distributions in all natural structures, 
they should also be appropriate for the analysis of these 
relatively simple model structures. 

Fault-propagation folds 

Fault-propagation folds form due to shortening in 
front of a propagating fault tip (Suppe and Medwedeff, 
1984, 1990). The original fault-propagation fold model 
(Fig. 2a) involves angular/kink folding at axial surfaces 
fixed with respect to a uniformly dipping thrust ramp 
propagating upwards from an existing flat (Suppe and 
Medwedeff, 1984, 1990). In addition to the imposed 
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(9) I 
Fig. 2. Fault-propagation fold models analysed in this study. (a) Parallel 
fault-propagation fold (modified after Suppe and Medwedeff, 1984, 
1990). (b) Fault-propagation fold with 25% forelimb thinning (modified 
after Jamison, 1987). (c) Fault-propagation fold with 25% forelimb 
thickening (modified after Jamison, 1987). (d) Fault-propagation fold 
with antithetic (top-to-the-hinterland) bedding-parallel simple shear at 
trailing edge loose line (modified after Mitra, 1990). (e) Fault- 
propagation fold with synthetic (top-to-the-foreland) bedding-parallel 
simple shear at trailing edge loose line (modified after Mitra, 1990). (f) 
Fault-propagation fold developed over a thrust with constant dip 
(modified after Chester and Chester, 1990). (g) Trishear fault-propaga- 

tion fold (Erslev, 1991). 

geometric boundary conditions of the fault, this model 
assumes deformation by distributed bedding-parallel 
shear, or flexural flow, resulting in a parallel fold 
geometry and conservation of bed length (Suppe and 
Medwedeff, 1984, 1990). Displacement-distance analysis 
of this fault-propagation fold model (Fig. 3) reveals a 
constant displacement segment corresponding to the 
hanging wall flat (horizontal trajectory on displace- 
ment-distance plot), and a segment with a linear 
displacement gradient sloping down from the maximum 
displacement to zero at the fault tip (corresponding to the 

I I I I I I I 

V=H 

00 
faun trailing 
tip Distance @w 

Fig. 3. Displacement-distance plot for the fault-propagation fold in 
Fig. 2(a). Vertical and horizontal scales are equal. The other fault- 
propagation fold models considered in this study yield similar 
displacement-distance trajectories, although the displacement gradient 

and relative stretch may be different for a given ramp angle. 

hanging wall ramp). The s/p ratio calculated from the 
measured relative stretch value using equation (1) agrees 
with the actual s/p ratio. The relationship between s/p 
ratio and relative stretch for the Suppe and Medwedeff 
(1984, 1990) fault-propagation fold model (equation A5) 
is identical to that derived for the Williams and Chapman 
(1983) dislocation model (equation l), despite the fact 
that the fault geometry (ramp-flat vs planar) and strain 
mechanisms (bedding-parallel simple shear vs fault- 
parallel pure shear) are completely different in the two 
models (see Appendix). This suggests that equation (1) 
accurately describes the relationship between relative 
stretch and s/p ratio for any general fault-propagation 
fold model characterized by a linear displacement 
gradient and a propagation rate higher than the displace- 
ment rate (i.e. 0 <s/p-c 1). The actual values of relative 
stretch and s/p ratio for a fault-propagation fold are 
dependant on the dip of the thrust ramp. Figure 4 shows 
how relative stretch increases with increasing dip for the 
Suppe and Medwedeff (1984, 1990) fault-propagation 
fold model. 

Since the introduction of the original fault-propaga- 
tion fold model by Suppe and Medwedeff (1984) several 
modifications have been added. Jamison (1987) modified 
Suppe and Medwedell’s (1984) model to include a 
component of forelimb thinning (Fig. 2b) or thickening 
(Fig. 2~). Mitra (1990) considered the case where 
additional synthetic (top-to-the-foreland) or antithetic 
(top-to-the-hinterland) bedding-parallel simple shear 
was added to the fault-propagation fold, resulting in an 
inclined trailing edge loose line (Fig. 3d & e). Chester and 
Chester (1990) adapted the fault-propagation fold model 
to the case where the fold forms above a planar thrust 
(Fig. 2f). Each of these modified fault-propagation fold 
models yield displacement-distance plots similar to the 
original model (Fig. 3), although the exact relationship 
between relative stretch and s/p ratio is different. 

Trishear fault-propagation folding (Erslev, 1991) 
represents another end-member fault-propagation fold 
model where displacement is transferred from a discrete 
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Fig. 4. Plot of observed values of s, as a function of fault ramp dip for 
end-member fault-propagation folds and fault-bend folds. 
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fault at depth to a broader, triangular-shaped shear zone 
at higher structural levels (i.e. shear strain decreases as 
the shear zone widens). Displacement-distance analysis 
of trishear fault-propagation folds reveals a constant 
displacement segment (below the intital tip position) and 
a linear displacement gradient segment (above the initial 
tip position), similar to other fault-propagation fold 

models. 

Fault-bendfolds 

Rich (1934) recognized that folds can form in response 
to displacement on a non-planar fault surface. This 
process, known as fault-bend folding, has been subse- 
quently studied in detail and quantified by Suppe (1983). 
The Suppe (1983) fault-bend fold model assumes that the 
fault exists at the earliest stages of displacement (i.e. the 
propagation rate is instantaneous relative to the displace- 
ment rate, so s/p= 0). Although this assumption is 
obviously not valid in all cases, it may be reasonable for 
many structures. The fault-bend fold model provides an 
explanation for strain that is unrelated to thrust tip 
propagation. 

Elliott (1976) produced a physical analog fault-bend 
fold model by shearing a stack of paper computer cards 
above a precut, curved fault surface (Fig. 5a). Because of 
the layer-parallel anisotropy of the cards, deformation in 
the model occurred by bedding-parallel simple shear. 
Additional top-to-the-foreland shear unrelated to folding 
results in an inclined trailing edge loose line, and 
increased displacement in the direction of transport at 
the leading edge of the structure. A displacement- 
distance plot for this structure (Fig. 6a) reveals that the 
displacement along the fault increases in the direction of 
transport, with the displacement gradient occurring 
along the hanging wall ramp. This is consistent with 
cutoff length modification by layer-parallel simple shear. 

(‘I 

Fig. 5. Fault-bend fold models analysed in this study. (a) Paper card 
ramp fold model (modified after Elliott, 1976). (b) Kink fault-bend fold 
developed over a planar ramp (modified after Suppe, 1983). (c) Fault- 
bend fold developed over a curved ramp (forward modeled using 

GEOSECTM). 
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Fig. 6. (a) Displacement-distance plots for the fault-bend fold models 
in Fig. 5(a) and (b). Vertical and horizontal scales are equal. (b) 
Displacement-distance plots for three stages of displacement of the 
fault-bend fold model in Fig. S(c) (c represents the maximum 
displacement). Vertical exaggeration = 2 x Distance is measured 
relative to the trailing edge of the hanging wall in each case. Vertical 

arrows indicate the location of the displacement maximum. 

Despite the fact that s/p=O, the layer-parallel simple 
shear results in a finite relative stretch. Thus the relation- 
ship between s/p and relative stretch in this model cannot 
be explained by equation (1). 

A simple fault-bend fold model with a planar ramp and 
angular fault bends is shown in Fig. 5(b) (modified after 
Suppe, 1983). Deformation in this model also occurs by 
layer-parallel simple shear, resulting in a parallel fold 
geometry. Displacement-distance analysis of this struc- 
ture results in a stepped displacement-distance trajectory 
(Fig. 6a), with constant displacement along the hanging 
wall flat and a linear decrease in displacement (constant 
relative stretch and displacement gradient) along the 
hanging wall ramp. As with the Elliott (1976) model, this 
is consistent with the bedding-parallel simple shear 
deformation. Because no additional trailing-edge shear 
was included in this model, and because of the sense and 
magnitude of simple shear in the forelimb, the hanging 
wall cutoff lengths decrease in length in this model. This 
distribution of shear results in a displacement decrease in 
the direction of transport. Like the fault-propagation 
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fold model, the magnitude of relative stretch in the fault- 
bend fold model depends on the ramp dip (Fig. 4). As 
with the Elliott (1976) model, the relationship between 
s/p (0) and relative stretch (finite value) in this model 
cannot be explained by equation (1). 

Figure 5(c) shows a forward model of a fault-bend fold 
formed above a curved ramp (actually approximated by 
many linear segments). This model was created using 
GEOSECTM, a computer program which uses a flexural 
(bedding-parallel) simple shear algorithm to forward 
model fault-bend folds (Geiser et al., 1988). Figure 6(b) 
shows displacement-distance plots for three different 
stages of displacement of this structure (Fig. 5c illustrates 
the final stage of displacement). The three plots are 
displayed with distance measured relative to the trailing 
edge of the hanging wall (left side of plot), and the vertical 
arrows indicate the maximum displacement on each of 
the curves. In each case, the maximum displacement 
occurs somewhere over the ramp. This distribution of 
displacement maxima can be explained in terms of the 
distribution of simple shear in the structure. Where 
hanging wall cutoffs are juxtaposed against steeper 
footwall cutoffs, synthetic simple shear in the hanging 
wall lengthens the cutoffs, and where hanging wall cutoffs 
are juxtaposed against shallower footwall cutoffs, anti- 
thetic simple shear in the hanging wall shortens the 
cutoffs. As displacement increases, the position of the 
displacement maximum migrates towards the lower 
hanging wall cutoff. Eventually, when the lower hanging 
wall cutoff reaches the upper footwall cutoff, the 
displacement maximum will coincide with the lower 
hanging wall flat. A fault-bend fold modeled on a similar 
ramp but with a vertical simple shear deformation 
mechanism results in a similar distribution of displace- 
ment. 

Figure 7 shows a plot of measured values of relative 
stretch (and calculated values of s/p) for three bed cutoff 
segments originating from the lower and middle parts of 
the ramp with cutoff angles of 15”, 20”, and 30”. This plot 
indicates that bed cutoff lengths, and thus values of 
relative stretch, change with increasing displacement in 
response to fault-bend folding by simple shear. The 15” 
and 20” cutoff segments first increase in length (relative 
stretch > 1), and then decrease in length (relative 
stretch< 1) as they are translated over steeper, and then 
shallower parts of the footwall ramp. The 30” cutoff 
segment originates at the steepest part of the ramp and 
thus only decreases in length with translation over the 
shallower dipping upper parts of the footwall ramp. 
Because the magnitude, and potentially the sense, of 
simple shear changes, cutoff lengths and relative stretch 
magnitudes change as well. In this case, the relative 
stretch is unrelated to the process of fault propagation, 
and only reflects hanging wall strain associated with 
translation over the curved fault surface (i.e. fault-bend 
folding). Because the value of relative stretch for each 
cutoff segment changes with increased displacement, the 
value of the s/p ratio calculated from equation (1) also 
IG 19.3,4-B 

changes. If the calculated s/p ratio is reflective of the 
actual rates of displacement and propagation, it would 
not be expected to change with displacement. Further- 
more, the actual s/p ratio is equal to 0 in this model 
despite the finite relative stretch values. Thus equation (1) 
does not satisfactorily describe the relationship between 
s/p and relative stretch in this model. 

De’collement folds 

Decollement, or detachment folds form by displace- 
ment and differential shortening of the hanging wall 
above a bedding-parallel fault, or decollement zone, 
which may occur either at a fault tip or within a thrust 
sheet (Jamison, 1987; Mitra and Namson, 1989). Unlike 
the case for fault-propagation folds, differential short- 
ening is independent of fault propagation in dtcollement 
folds, and can be accommodated above a fault that is 
propagating faster than the displacement rate (s/p< 1), 
propagating slower than the displacement rate (s/p > 1). 
or not propagating (s/p = co). For example, decollement 
folds may develop at a discontinuity on a dtcollement 
(i.e. high-angle fault offset) or at a stratigraphic pinchout 
of a dicollement zone (Goguel, 1962, p. 164; Laubscher, 
1977), thus allowing displacement to accumulate without 
propagation of the fault tip. 

Because of the wide range of possible decollement fold 
geometries, no simple geometric/kinematic model for 
decollement folding exists (Homza and Wallace, 1995). It 
is useful, however, to consider the implications of 
dtcollement fold evolution in certain conditions possible 
in nature, specifically the case where a fold forms above a 
non-propagating fault. Figure 8 shows the evolution of 
an area-balanced decollement fold forming above a non- 
propagating dtcollement surface. Bed length and thick- 
ness is conserved in the upper layers, as is consistent with 
deformation by bedding-parallel simple shear. Deforma- 
tion in the dCcollement zone, however, is heterogeneous. 
Although the exact displacement-distance relationships 
cannot be determined because of the lack of bed cutoffs in 
the heterogeneously sheared decollement zone, a dis- 
placement-distance plot for this model will be similar to 
that for the fault propagation fold (Fig. 3) where 
displacement is constant along the flat behind the fold, 
and decreases to zero at the fault tip. The displacement 
gradient near the fault tip results in a finite relative 
stretch, yet s/p = co for this model. Thus equation (1) will 
not accurately describe the relationship between s/p and 
relative stretch for decollement folds in general. 

DISCUSSION 

Figure 9 shows a plot of the observed values of relative 
stretch (E,) plotted as a function of s/p for the model 
structures analysed in this study. The relationship 
(Williams and Chapman, 1983) between E, and s/p, 
equation (l), is also plotted for reference. As suggested 
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Fig. 7. Plot of measured E, and calculated s/p as a function of displacement for three hanging wall cutoff segments in the fault- 
bend fold of Fig. 6(c). Cutoff segments correspond to the 15”, 20”, and 30” cutoffs from the lower and middle part of the ramp. 

See text for discussion. 

in the previous section, the empirical data determined 
from the model structures do not always coincide with 
the Williams and Chapman (1983) relationship (equation 
1). Fault propagation folds follow the Williams and 
Chapman (1983) relationship. Fault-bend folds plot 
along the s/p= 0 axis, and may have relative stretch 
values of 0 <s/p < 1 (displacement decreases in the 
direction of transport) or s/p > 1 (displacement increases 
in the direction of transport). Dtcollement folds have a 
wide range of possible positions, and s/p values may 
range up to infinity. Observed values of relative stretch 

range from 0 to > 1, and observed values of s/p range 
from 0 (fault-bend folds) to infinity (non-propagating 
dtcollement folds). The observed ranges of both of these 

(a) I 

Fig. 8. Decollement fold model formed above a non-propagating fault. 
Deformation occurs by layer-parallel simple shear in the upper beds, 
and by heterogeneous shear in the decollement zone. Circle represents 

fault tip position. 

parameters are outside of the range of possible values 
predicted by equation (l), given the constraints of s/p?0 

and @O (cutoff lengths cannot be less than 0). The 
observed pattern suggests a wide range of possible 
relationships between relative stretch and s/p. Thus 
calculation of s/p ratios from measured values of relative 
stretch using equation (1) may result in inaccurate s/p 

ratios. 
The use of displacement-distance plots in predicting 

fault tip locations is successful in cases where displace- 
ment gradients are linear and displacement decreases in 
the direction of transport (i.e. fault-propagation fold 

Er 30’ 

t \ \ \ 
0 
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SJP 
Fig. 9. Plot of observed values of E, and s/p for models analysed in this 
study. The theoretical relationship of Williams and Chapman (1983), 
equation (I), is plotted for reference. Numbers adjacent to data 
represent ramp angles. Data for Figs 5(a) and 8 as labeled. See text for 

discussion. 
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models). Where displacement gradients are unrelated to 
fault propagation (i.e. fault-bend fold models), or where 
displacement increases in the direction of transport (i.e. 
Elliott (1976) model), however, extrapolation from 
displacement-distance relationships will give a false tip 
location. 

Displacement maxima on displacement&distance plots 
are often taken to represent fault nucleation points. 
Strain due to simple shear unrelated to fault propagation, 
however, may result in displacement maxima that are not 
coincident with fault nucleation points. For example, 
despite the fact that the the fault in the fault-bend fold 
model in Fig. 5(c) originated before any displacement 
occurred (s/p = 0), layer-parallel simple shear in response 
to translation over the footwall ramp resulted in a local 
displacement maxima (Fig. 6b). 

Although the relationship between s/p and E, given in 
equation (1) may not be generally valid for all fold-thrust 
structures, many of the conclusions based on s/p ratios 
determined from equation (1) are nonetheless good. For 
example, although the s/p ratios determined using this 
relationship may not be exactly correct, comparison of 
s/p ratios in a qualitative way can lead to an improved 
interpretation (Dominic and McConnell, 1994). Simi- 
larly, the nucleation points determined by Ellis and 
Dunlap (1988) are reasonable given the fact that the 
fault tip line often intersects the plane of section at both 
ends, and the faults are nearly planar in section. 
Displacement distance analysis can also be used to 
recognize the presence of branch lines, which may 
appear as displacement discontinuities or jogs on dis- 
placement-distance diagrams (Williams and Chapman, 
1983). These approaches can be useful in evaluating and 
improving structural interpretations where other con- 
straints are not available. In addition, the relationships 
between relative stretch magnitudes and fault cutoff 
angle (Fig. 4) may be useful in discriminating between 
hanging wall strain caused by a propagating fault tip and 
strain unrelated to fault propagation. Higher displace- 
ment gradients (low relative stretch values) seem to be 
associated with a propagating fault tip, whereas low 
displacement gradients (higher relative stretch values) 
appear to be associated with fault-bend folding. 

CONCLUSIONS 

As recognized by Williams and Chapman (1983), the 
processes of fault propagation and displacement are 
highly dependent on the nature of the ductile strain in 
the rocks adjacent to the fault. The exact nature of the 
relationship between these processes, however, may be 
more complex than previously recognized. Displace- 
ment-distance analysis of fault-related fold models 
reveals the following insights into the relationship 
between fault propagation, ductile strain, and displace- 
ment-distance relationships. 

(1) Displacementdistance relationships are highly 
dependent on the nature of the hanging wall strain. In 
some cases, different processes can result in similar 
displacement-distance relationships (i.e. identical 
relationship between s/p and E, in fault-parallel pure 
shear and fault-propagation fold models), and, in other 
cases, similar deformation mechanisms can result in 
different displacement-distance relationships (i.e. 
bedding-parallel simple shear in both fault-propagation 
fold and fault-bend fold models). 

(2) In general, relative stretch is not related to s/p in 
any simple way. Displacement-distance relationships for 
fault-propagation fold models with linear displacement 
gradients appear to be described accurately by equation 
(1). However, displacement-distance relationships for 
fault-bend folds and dicollement folds are not. Thus fault 
propagation histories cannot be uniquely determined 
from displacement-distance relationships in most cases. 

(3) Deformation by simple shear in response to slip on 
a non-planar fault may yield displacement gradients that 
are not related to fault propagation. Thus fault tip 
locations cannot always be predicted by linear 
extrapolation of displacement-distance trajectories. 

(4) Simple shear may result in displacement maxima 
that are unrelated to fault propagation. Therefore, 
displacement maxima are not necessarily indicative of 
fault nucleation points in all cases. 

(5) Although calculation of s/p ratios from observed 
relative stretch magnitudes may not be appropriate, the 
use of displacement-distance relationships can 
nonetheless be useful in comparing structures and 
improving structural interpretations. 
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APPENDIX 

s/p ratio in fault-propagarion fold models 

Fault-propagation fold models (Suppe and Medwedeff, 1990) predict 
a quantitative relationship between the s/p ratio and relative stretch. 

Fig. Al. Fault-propagation fold model showing the parameters used in 
derivation of the relationship between relative stretch and s/p for fault- 

propagation folds. 

Because the bed length is constant along the lower flat, 

s+6=I/ (AlI 

(Fig. Al). Because the ramp length represents the distance the fault has 
propagated, 

I/ =p. (A21 

Dividing equation (A I) by 4, 

s + 1, 
---= 1. 

Is 
(A3) 

Substituting equation (A2) into equation (A3). 

Substituting equation (2) into equation (A4), 

&,=1-S.. 
P 

(A5) 

Notice that this reiationship is identical to that derived by Williams 
and Chapman (1983) for the case of fault-parallel pure shear in equation 
(1). Thus despite the fact the the type of shear is completely different in 
the Williams and Chapman (1983) pure shear model and the fault- 
propagation fold modeI (bedding-parallel simple shear), the relation- 
ships between s/p ratio and relative stretch are identical. 


